Measurement of the Aggregates of Anionic Porphyrin with Cationic Surfactants at the Supercritical Carbon Dioxide/Water Interface by Total Internal Reflection Spectroscopy

Akira OHASHI*, Masaki ENDO, Kouhei YAMAGISHI, Haeng-Boo KIM
College of Science, Ibaraki University, Bunky 2-1-1, Mito, Ibaraki 310-8512, Japan

A total internal reflection (TIR) spectrometric devise was developed for direct measurement of adsorbates at the supercritical carbon dioxide (SC-CO\(_2\))/water interface. The aggregation of diprotonated 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (H\(_4^\text{tpps}^2\)) with cationic surfactants, cetyltrimethylammonium ion (CTA\(^+\)), at the SC-CO\(_2\)/water interface was studied using this devise. Dependence of the TIR absorption spectra on CTA\(^+\) concentration and CO\(_2\) pressure were investigated, and the interfacial CTA\(^+\) concentration was found to cause changes in the interfacial H\(_4^\text{tpps}^2\) species present. Increasing the CO\(_2\) pressure changed the interfacial species from the H\(_4^\text{tpps}^2\) monomer to the H\(_4^\text{tpps}^2\) J-aggregate because the interfacial CTA\(^+\) concentration increased as the pressure increased.

1. Introduction

Supercritical fluid extraction (SFE) of organic compounds and metal complexes from aqueous media has become a feasible separation method alternative to solvent extraction [1,2]. Among the supercritical fluids used in SFE, supercritical carbon dioxide fluid (SC-CO\(_2\)) has been widely used as the extraction medium, since it is non-toxic, cheap, environmentally acceptable and has a relatively mild critical point. Many studies on supercritical carbon dioxide (SC-CO\(_2\)) extraction of analytes from liquid matrix have been reported in recent years [3,4]. Clarification of chemical reactions at the SC-CO\(_2\)/water interface is important to understand the SC-CO\(_2\) extraction mechanism and kinetics. However, studies on the SC-CO\(_2\)/water interface have been performed only by the interfacial tension determination [5,6]. Therefore, the development of spectroscopy analysis of the SC-CO\(_2\)/water interface is demanded, because the spectroscopy analysis allows us to obtain the much information about chemical species at the SC-CO\(_2\)/water interface. In this study, we developed the total internal reflection (TIR) spectroscopic system for measurement of the reaction at SC-CO\(_2\)/water interface and investigated the aggregation of water-soluble porphyrin with cationic surfactants at the SC-CO\(_2\)/water interface.

2. Experimental

2.1 Reagents

Cetyltrimethylammonium chloride (CTAC) was purchased from Tokyo Kasei (Japan). 5,10,15,20-Tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid tetrahydrate (H\(_4^\text{tpps}^2\cdot2\text{H}_2\text{SO}_4\cdot4\text{H}_2\text{O}) was purchased from Dojindo (Japan). Each stock solution was prepared in
pure water. Liquid CO$_2$ (99.99%) was purchased from Taiyo Nissan Co. Ltd. Water was double distilled and purified further using a Milli-Q system (Millipore). All other chemicals were of analytical reagent grade and were used without further purification.

2.2 Apparatus

Figure 1 is a schematic of the TIR spectroscopic system developed in this study. The system has a CO$_2$ delivery pump (SCF-Get; Jasco), a syringe pump (KD210; Muromachi), a pressure tight optical cell (Jasco), a UV–vis spectrophotometer (USB3000; Ocean Optics), an arc lamp light source (APEX SOURCE ARC 150W XE OF; Newport), and a back-pressure regulator (880-80; Jasco). The pressure-tight optical cell is cylindrical and made of stainless steel with a 10 cm3 inner volume, 15 mm path length, a pair of quartz windows (22 mm diameter, 15 mm thick), and a water jacket to control the temperature. Optical fibers and a focus lens are used to irradiate the sample and collect the reflected light. A polarization prism is placed between the pressure-tight optical cell and optical fiber on the irradiation side. Temperature of the pressure-tight optical cell is monitored using a digital temperature indicator (Fenwal), and pressure inside the cell is monitored using a digital pressure gauge (Toyo Sokki).

2.3 Measurement of total internal reflection spectra at the SC-CO$_2$–water interface

An aqueous solution (5.7 mL) containing H$_2$tpps$^{4-}$ and CTA$^+$ was added to the pressure-tight optical cell using a syringe pump. CO$_2$ was then introduced into the cell using a CO$_2$ delivery pump, and the cell pressure was controlled using a back-pressure regulator. Temperature inside the cell was maintained at 318 K using a water jacket and a thermostat-controlled water circulator. The system was left to equilibrate for 7 h, light was irradiated obliquely to the interface from the aqueous medium side.
and the TIR spectrum was measured. The refractive index of water (1.34) are larger than those of CO₂ and SC-CO₂ (1.02–1.12, respectively [7]). The incidence angle was fixed at 68°. The TIR absorbance, A_{TIR}, was defined as $\log(R_0/R)$, where R_0 and R are the reflectivities in the absence and presence of the absorbate, respectively. The absorption spectrum of the aqueous phase was measured simultaneously.

$\text{H}_4\text{tpps}^{2-}$ concentration was maintained at 2.0 µM, and CTAC concentration was varied from 0 to 9 µM. Pressure was varied from 1 to 10 MPa, and CO₂ pressure and temperature were maintained within 0.2 MPa and 0.1 °C, respectively, of the desired value.

3. Results and Discussion

3.1 Aggregation behavior of $\text{H}_4\text{tpps}^{2-}$ with CTA⁺ at the SC-CO₂/water interface

Figures 2 and 3 show s-polarized TIR and the aqueous phase’s absorption spectra, respectively, at the various CTA⁺ concentrations measured using the apparatus developed in this study. Two bands at 434 nm and 492 nm in Figures 2 and 3 were assigned to the $\text{H}_4\text{tpps}^{2-}$ monomer in the aqueous phase and the $\text{H}_4\text{tpps}^{2-}$ J-aggregate at the SC-CO₂/water interface. The TIR absorbance at 434 nm decreased and that at 492 nm increased with an increase in the CTA⁺ concentration as shown in Figure 2. A similar spectral change in the aqueous phase was observed in Figure 3. However, the absorbance at 492 nm in Figure 3 was much smaller than that in Figure 2. This result indicated that the H₄tpps²⁻ J-aggregate was mainly formed at the SC-CO₂/water interface. The TIR absorbance spectrum of the H₄tpps²⁻ J-aggregate at the SC-CO₂/water interface could be obtained by the deduction of the absorption spectrum in the aqueous phase. Figure 4 shows the plots of the TIR absorbance at 492 nm of the H₄tpps²⁻ J-aggregate at the SC-CO₂/water interface after the deduction of the absorbance in the aqueous phase against the concentration of CTA⁺. The TIR absorbance at 492 nm became constant near 1 µM of CTA⁺. This result indicated that the interfacial concentration of H₄tpps²⁻ J-aggregate was saturated about 1 µM of CTA⁺.
Pressure-dependent TIR absorption spectra were measured at a constant CTA$^+$ concentration (1 µM) to determine the effect the CO$_2$ pressure on H$_4$tpps$^{2-}$ aggregation at the SC-CO$_2$–water interface. Figure 5 shows the s-polarized TIR spectra at the various CO$_2$ pressures. The TIR absorbance at 492 nm increased with an increase in the CO$_2$ pressure. As the pressure increases, the adsorptivity of CTA$^+$ at the SC-CO$_2$/water interface may become higher [8]. That is, the interfacial concentration of CTA$^+$ at high pressure is higher than that at low pressure. This may cause the higher interfacial concentration of H$_4$tpps$^{2-}$ and the formation of H$_4$tpps$^{2-}$ J-aggregate with CTA$^+$. The result obtained implies that it is possible to change the interfacial chemical species by changing the pressure in the SC-CO$_2$/water system.

4. Conclusion

In this study, we developed a TIR spectrometric devise for direct measurement of the adsorbate at the SC-CO$_2$/water interface. The aggregation of H$_4$tpps$^{2-}$ with CTA$^+$ at the SC-CO$_2$/water interface was studied using this devise. The TIR spectra of the H$_4$tpps$^{2-}$ J-aggregate formed at the SC-CO$_2$/water interface could be observed. The method developed in this study allows us to obtain much information on the chemical species at the SC-CO$_2$/water interface. Therefore, this may promote further development on the investigation in the supercritical CO$_2$ extraction.

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 26410143.

References

1) F.V. Bright, M.E.P. McNally, “Supercritical Fluid Technology: Theoretical and Applied
Approaches to Analytical Chemistry”, 1992, ACS, Washington DC.

