

Anomalously Suppressed Ion-exchange Extraction Behavior of Ni(II) into Ionic Liquids with Using *N*,*N*,*N*',*N*'-Tetrakis(2-pyridylmethyl)ethylenediamine as a Neutral Chelator

Natsumi ASANO, Kotaro MORITA and Naoki HIRAYAMA*

Department of Chemistry, Faculty of Science, Toho University, Funabashi 274-8510, Japan

In use of N, N, N', N'-tetrakis(2-pyridylmethyl)ethylenediamine (**tpen**) as a hexadentate neutral chelator, ion-exchange extractability for Ni(II) into an ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C₄mimTf₂N), was anomalously suppressed. From comparative extraction experiments with using different ILs and/or chelators corresponding to several substructures of **tpen**, it was suggested that **tpen** coordinates to Ni²⁺ as a tetradentate ligand in C₄mimTf₂N and that two 2-pyridylmethyl pendant arms in **tpen** without coordinating to Ni²⁺ resulted in the extraction suppression due to their relatively high protonation ability.

1. Introduction

Hydrophobic ionic liquids (ILs), including 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C_n mimTf₂N, Figure 1), can extract many ionic species having hydrophobic and/or

IL-philic nature from aqueous solutions via ion-exchange process. In extraction of metal cations into ILs via cation-exchange, their hydrophobization by forming complexes with monodentate neutral ligands or neutral chelators is imperative process.

N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylenediamine (**tpen**, Figure 2) is a hexadentate neutral chelator having four 2-pyridylmethyl pendant arms, and can form cationic complexes with many metal cations. Several researchers have studied its possible use for ion-pair extraction of several metal cations into organic solvents [1,2] and that for their cation-exchange extraction into ILs [3].

In study on cation-exchange extraction of several divalent metals into C_4 mimTf₂N with using **tpen**, we wandered upon a curious fact that extraction of Ni(II) was dominantly suppressed. To clarify cause for the anomalous suppression, we investigated cation-exchange extraction behavior of Ni(II) with different chelators [*N*,*N*'-bis-(2-pyridylmethyl)ethylenediamine (**bpen**), bis(2-pyridylmethyl)ethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**), bis(2-pyridylmethylenediamine (**bpen**

Figure 1. Chemical structure of $C_n \min Tf_2 N$.

Figure 2. Chemical structures of the chelators used in this study.

Figure 2] corresponding to several substructures of tpen.

2. Experimental

2.1 Chemicals and apparatus

The three ILs (C_2mimTf_2N , C_4mimTf_2N and C_8mimTf_2N) were synthesized according to the previous reports [4,5]. The chelators (**tpen**, **bpa** and **ap**), nitrobenzene and other reagents were of reagent-grade materials purchased from Dojindo (Kumamoto, Japan), TCI (Tokyo, Japan) and other suppliers, and were used without further purification. High-purity water was produced with a Millipore Direct-Q water purification system.

A Thermo Fisher Model iCE3300 flame atomic absorption spectrometer was used for the determination of the metals in the aqueous phase. A Horiba Model F-72 pH meter equipped with a Horiba 9680-10D combined glass electrode was used to measure the pH values.

2.2 Extraction procedure

Aqueous phase (5 mL, pH 1–5) containing 2.0 µg mL⁻¹ of Ni(II), Cu(II), Zn(II) or Mn(II), 0.1 M NaClO₄ (or KNO₃). 0.01M buffer (chloroacetic acid or acetic acid) was shaken to be equilibrated with extraction phase (1 mL, an IL or nitrobenzene) containing 1.0×10^{-3} M **tpen**, 2.0×10^{-3} M **bpa** or 4.0×10^{-3} M **ap**. On extraction at more acidic condition, suitable amount of HNO₃ was used instead of buffer and –log C_{HNO3} value was used instead of aqueous phase pH. After phase separation by centrifugation, the metal contents in the both phases were determined with using flame AAS, and extraction ratio (%*E*) and distribution ratio (*D*) for the metal were calculated. (The content in the extraction phase was determined after back-extraction into 1–3 M HNO₃.)

3. Results and Discussion

3.1 Extraction behavior of divalent metals into $C_4 mimTf_2N$ with tpen

Figure 3 shows extraction behavior of Ni(II), Cu(II), Zn(II) and Mn(II) into nitrobenzene and C₄mimTf₂N containing 1.0×10^{-3} M **tpen**. Changing NaClO₄ to KNO₃ in the nitrobenzene system resulted in the loss of metal extractability, whereas that in the C₄mimTf₂N system resulted in no change. Namely, the cationic **tpen** complexes were extracted as ion-pair with ClO₄⁻ in the former system and via cation-exchange mechanism in the latter system.

Cu(II), Zn(II) and Mn(II) showed similar extraction behavior between the nitrobenzene and C_4 mimTf₂N systems. On the contrary, extraction of Ni(II) into C₄mimTf₂N was quite low compared to that into nitrobenzene. In addition, it was confirmed from slope analysis (log *D* vs. log [**tpen**]_e) that the extracted species into nitrobenzene is

Figure 3. Extraction behavior of Ni (\bigcirc), Cu (\bigcirc), Zn (\diamondsuit) and Mn (\triangle) into nitrobenzene (A) or C₄mimTf₂N (B) with **tpen**.

M(**tpen**)²⁺·2ClO₄⁻ ion-pair and that into C₄mimTf₂N is M(**tpen**)²⁺ cation (except for Ni(II)). **3.2 Extraction behavior of Ni(II) into C₄mimTf₂N with bpen, bpa and ap**

To make the suppression of Ni(II) extractability clear, extraction behavior of Ni(II) with using **bpen**, **bpa** and **ap** was investigated. On each experiment, chelator concentration was set based on the number of the 2-pyridylmethyl pendant arm.

The results are shown in Figure 4. In use of **bpa** and **ap**, the nitrobenzene system and the

 $C_4 mimTf_2N$ system showed similar extraction behavior. In use of **bpen**, intriguingly, the $C_4 mimTf_2N$ system showed high extractability for Ni(II), whereas the nitrobenzene system showed quite low one. Since **bpen** is a tetradentate chelator, Ni(**bpen**)²⁺ complex seems to be coordinativelyunsaturated (hydrated) one. $C_4 mimTf_2N$ has lower hydrophobicity than nitrobenzene and, therefore, the **bpen**- $C_4 mimTf_2N$ seems to show relatively high Ni(II) extractability.

On the contrary, hexadentate chelator **tpen** can form coordinatively-saturated complex with Ni(II). Namely, structure of the extracted cationic Ni(II)-**tpen** complex in the C_4 mimTf₂N system seems to be different from that in the nitrobenzene system. In other words, it was suggested that the additional two 2-pyridylmethyl pendant arms in **tpen** play some role in the extraction suppression in the C_4 mimTf₂N system.

3.3 Extraction behavior of Ni(II) into various ILs with bpen and tpen

To evaluate the relationship between Ni(II) extractability and relative hydrophobicity of extraction phase solvent, extraction behavior of Ni(II) with **bpen** and **tpen** into C_2mimTf_2N and C_8mimTf_2N was investigated. The results are shown in Figure 5 with the data for the C_4mimTf_2N and nitrobenzene systems.

In use of **bpen**, the order of Ni(II) extractability between solvents at pH 2–3 was $C_2mimTf_2N > C_4mimTf_2N > C_8mimTf_2N > nitrobenzene, which is the inverse order of hydrophobicity of the solvents. This result is consistent with the relatively low hydrophobic nature of$

 $\label{eq:Figure 4. Extraction behavior of Ni(II) into} \\ nitrobenzene (A) \mbox{ or } C_4 mimTf_2 N \mbox{ (B)}.$

 \bullet tpen, \Box bpen, \bigcirc bpa, \triangle ap

Figure 5. Extraction behavior of Ni(II) with **bpen** (A) and **tpen** (B) into C_2mimTf_2N (\bigcirc), C_4mimTf_2N (\bigcirc), C_8mimTf_2N (\diamondsuit) or nitrobenzene (\blacklozenge).

ISEC 2017 - The 21st International Solvent Extraction Conference

coordinatively-unsaturated (hydrated) Ni(**bpen**)²⁺. In addition, the order between ILs, $C_2 mimTf_2N > C_4 mimTf_2N > C_8 mimTf_2N$, accorded with conventional order in cation-exchange extraction into ILs [6].

In use of **tpen**, on the contrary, the order of Ni(II) extractability between solvents at pH 1–2 was nitrobenzene > $C_8mimTf_2N >> C_4mimTf_2N \approx C_2mimTf_2N$. Interestingly, C_8mimTf_2N having higher hydrophobicity than C_4mimTf_2N showed similar Ni(II) extractability to nitrobenzene, whereas C_2mimTf_2N having lower hydrophobicity showed similar one to C_4mimTf_2N . Probably, coordinatively-saturated (unhydrated) hydrophobic Ni(**tpen**)²⁺ complex prefers more hydrophobic solvents.

The p K_a values for H₄tpen⁴⁺, H₃tpen³⁺, H₂tpen²⁺ and Htpen⁺ are 2.95, 3.35, 4.86 and 7.19, respectively [7], whereas respective ones for the protonated **bpen** are 1.62, 1.81, 5.45 and 8.23 [8]. These values show that the pendant arms on **tpen** have high affinity for H⁺ compared to those on **bpen**. In less-hydrophobic ILs such as C₄mimTf₂N and C₂mimTf₂N, it was suggested that **tpen** coordinates to Ni²⁺ not as a hexadentate ligand but as a tetradentate one to form relatively less-hydrophobic complex and that non-coordinating pyridine-N atoms on the free pendant arms are protonated, resulting in distribution of the more-charged (protonated) complex into the aqueous phase.

Acknowledgement

This study was financially supported in part by JSPS KAKENHI Grant No. JP26410162 from the Japan Society for the Promotion of Science, and MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2012–2016) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1) M. Watanabe, R. Mirvaliev, S. Tachimori, K. Takeshita, Y. Nakano, K. Morikawa, R. Mori, *Chem. Lett.*, 1230-1231 (2002).
- N. Hirayama, S. Iimuro, K. Kubono, H. Kokusen, T. Honjo, *Anal. Chim. Acta*, 339, 115-121 (1997).
- 3) K. Shimojo, H. Naganawa, F. Kubota, M. Goto, Chem. Lett., 35, 484-485 (2006).
- 4) S. V. Dzyuba, R. A. Bartsch, *ChemPhysChem*, **3**, 161-166 (2002).
- 5) A. K. Burrell, R. E. Del Sesto, S. N. Baker, T. M. McCleskey, G. A. Baker, *Green Chem.*, 9, 449-454 (2007).
- 6) T. Hamamoto, M. Okai, S. Katsuta, J. Phys. Chem. B, 119, 6317-6325 (2015).
- 7) G. Anderegg, F. Wenk, *Helv. Chim. Acta*, **50**, 2330-2332 (1967).
- 8) R. G. Lacoste, A. E. Martell, *Inorg. Chem.*, **3**, 881-884 (1964).