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The micro-polarity and micro-viscosity of liposome membranes were evaluated to develop a platform for 

the localization of hydrophobic substrates in aqueous solution. The distribution ratios of benzaldoxime 

(BO) onto the zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposome and onto the 

cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposome were almost the same, while 

those of benzonitrile oxide (BNO) onto DOTAP liposomes were higher than those of BO. Through the 

analysis of a polarity-sensitive 6-lauroyl-2-dimethylaminonaphthalene, the membrane surface of the 

DOTAP liposome was found to be dehydrated in the presence of substrates. Using a fluorescent probe 

1,6-diphenyl-1,3,5-hexatriene, we found that the micro-viscosity of the DOTAP liposome membrane 

increased with BNO. These results indicate that the interaction of hydrophobic substrates induce variations 

in the microscopic membrane environment. 

 

 

1. Introduction 

Click chemistry in water solution has been developed as a simple and secure process for asymmetric 

syntheses [1]. Diels-Alder reactions have been studied as powerful chemical reactions to be used in 

high-yield and high-stereoselective methods [2-3]. The 1,3-dipolarcycloaddition reaction, one of the 

well-known Dields-Alder reactions, requires each reactant to have a high-diffusion coefficient within one 

phase in multiple phase systems, although most of the substrates are hydrophobic and are not readily 

dissolved in the water phase. In order to achieve such an organic synthesis in the water phase, the 

self-assembly systems, such as micelles, oil-in-water emulsions, and vesicles, have been studied to improve 

the yield and stereoselectivity [4-6]. Liposomes are self-assembled phospholipid bilayers in water, where 

the basic structure of a lipid membrane is the lipid bilayer with a 5 nm-thickness consisting of a polar 

membrane surface and a non-polar inner membrane [7]. Due to the hydrophobic interior of these systems, it 

becomes possible for hydrophobic molecules to homogeneously diffuse in aqueous solution [8]. By 

utilizing the liposome membrane systems, a novel platform for organic synthesis, e.g. 

1,3-dipolarcycloaddition reaction of nitrile oxide and maleimide [6], can be established. The solution 

properties, such as the polarity of the solution and its viscosity, are key factors that control the Diels-Alder 

reactions [9]. It is therefore important to characterize the microscopic properties of the liposome membrane 

as a “platform” for the accumulation of substrates and for the improvement of chemical reactions in water.  
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film was kept under high vacuum for at least 3 h, and then hydrated with distilled water at room 

temperature. The obtained liposome suspension was frozen at -80°C and then thawed at 50°C; this 

freeze-thaw cycle was repeated 5 times. A large unilamellar vesicle was obtained by extruding the vesicle 

suspension 11 times through 2 layers of a polycarbonate membrane with a mean pore diameter of 100 nm 

using an extruding device (Liposofast; Avestin Inc., Ottawa, Canada). 

The distribution ratios (D) of the substrates in the liposome membranes were evaluated by using the 

ultrafiltration method. Each substrate was incubated with the liposome solution for 30 min at room 

temperature, and the liposome and substrates distributed in the membrane were removed with the 

ultrafiltration unit USY-5 (molecular weight cutoff: 50,000, Advantec Toyo, Ltd., Tokyo, Japan). The 

distribution ratios of substrates on the filtration membranes were lower than 0.05, and the fraction of each 

substrate was calculated with the corrected concentration of the substrates. The D values of the substrates 

were calculated as follows: 

D = Cm / Cw       (1) 

where Cm and Cw are the concentrations of the substrate in the membrane and in the water solution, 

respectively. The concentration of the reactant in the eluted solution was measured by UV-vis spectroscopy.  

The fluorescence spectra of Laurdan and DPH were measured by using a fluorescence 

spectrophotometer (FP-8500; Jasco, Tokyo, Japan). The excitation wavelength of Laurdan was 340 nm, 

measured with a 10 mm path length quartz cell. The fluorescence intensity of Laurdan was normalized with 

the spectrum of each liposome without substrates. The fluorescence anisotropy (r) of DPH was calculated 

based on the previous report [17]. A fluorescent probe DPH was added to the liposome suspension with a 

molar ratio of lipid/DPH of 250/1; the final concentrations of lipid and DPH were 100 and 0.4 M, 

respectively. The fluorescence polarization of DPH (Ex = 360 nm, Em = 430 nm) was measured after 

incubation at room temperature for 30 min. The sample was excited with vertically polarized light (360 nm), 

and emission intensities both perpendicular (I⊥) and parallel (I║) to the excited light were recorded at 430 

nm. The anisotropy (r) of DPH was then calculated using the following equations: 

r = (I║- GI⊥) / ( I║+ 2GI⊥)     (2) 

G = i⊥ / i║      (3) 

where i⊥ and i║ are the emission intensities, perpendicular and parallel to the horizontally polarized light, 

respectively, and G is the correction factor. Based on the previous report [17], the micro-viscosity ( DPH) 

was calculated using the following equation: 

DPH = 2.4r / (0.362 - r)     (4) 

The  DPH values of the oleic acid vesicles in the literature [17] and in our study were 59 cP and 39 cP, 

respectively, indicating that this method could estimate the micro-viscosity of lipid membranes. 

 

3. Results and Discussion 

3.1 Partitioning behaviors of BO and BNO onto liposome membranes 

The logP values of BO and BNO were calculated via both computational [18,19] and experimental 

methods (Table 1). The results indicated that BO and BNO were hydrophobic, implying that they can be 

accumulated in the hydrophobic regions of liposome membranes. Figure 2 shows the distribution ratios (D) 

of BO and BNO onto DOPC and DOTAP liposomes. In the case of the DOPC liposome, the D values of  
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DOTAP liposomes increased, on the other hand, those of the DOPC did not increase much, indicating that 

the interaction between BNO and DOTAP liposomes could affect both the micro-polarity (Figure 3) and 

the micro-viscosity (Figure 4). It has been reported that the solvent relaxation time of the DOTAP liposome 

was increased in the presence of zwitterionic DOPC [28], which suggests that the dipolar interaction 

between lipid molecules can stabilize the lipid membranes. It is therefore found that the localization of 

BNO in the DOTAP liposome could induce the stabilization of the membrane with the variation of the 

membrane surface state (disordered phase to ordered phase). These results suggest that the BNO can be 

localized on the DOTAP liposome and, furthermore, BNO and lipid molecules are tightly packed within the 

dehydrated membrane surface.  

 

4. Conclusion 

The micro-polarity and micro-viscosity of the liposome membranes were evaluated by using Laurdan 

and DPH, respectively. The distribution ratio of BNO in the DOTAP liposome was higher than that of 

DOPC, where increased dehydration and micro-viscosity of the DOTAP liposome membrane were induced 

by BNO. We found that the membrane surface of the DOTAP liposome varied with the partitioning of 

substrates, indicating the “dehydrated” and “viscous” membrane surface could affect the chemical reactions 

of the substrates. Because the environmental properties around the substrates are one of the key factors to 

regulate the yield and stereoselectivity, it is therefore expected that the liposome membrane surface can be 

utilized as a platform for chemical reactions in water. 
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